

    
      
          
            
  
Welcome to jirahub’s documentation!




Jirahub provides a configurable tool for synchronization of issues between a
GitHub repository and a JIRA project.  With it, you can use GitHub for coding
and ticket tracking while using JIRA for ticket tracking and project management.


Download and install

To download and install:

$ pip install jirahub





The package’s sole requirements are PyGithub [https://github.com/PyGithub/PyGithub] and
JIRA [https://github.com/pycontribs/jira].  Both of these dependencies are installable via pip.




JIRA configuration

jirahub stores state on the JIRA issue in two custom fields, which you (or your JIRA administrator)
will need to create.  The first field stores the URL of a linked GitHub issue, and should be
type “URL Field”.  The second stores a JSON object containing general jirahub metadata, and should
be type “Text field (multi-line)”.




jirahub configuration

Jirahub configuration is divided between environment variables (JIRA and GitHub credentials)
and one or more .py files (all other parameters).


Environment variables

Your JIRA and GitHub credentials are provided to jirahub via environment variables:







	Variable name

	Description





	JIRAHUB_JIRA_USERNAME

	JIRA username of your jirahub bot



	JIRAHUB_JIRA_PASSWORD

	JIRA password of your jirahub bot



	JIRAHUB_GITHUB_TOKEN

	GitHub API token [https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line] of your jirahub bot









Configuration file

The remaining parameters are specified in a Python configuration file.  There are few required
parameters, but jirahub takes no actions by default, so users must explicitly enable features that
they wish to use.  The generate-config command can be used to create an initial configuration file.
The file is executed with the c variable bound to an instance of jirahub.config.JirahubConfig,
which has two attributes, jira and github.


jira

These are parameters particular to JIRA.  The server and project_key attributes are required.







	Name

	Description





	c.jira.server

	The URL of your JIRA server (e.g., https://my-jira.example.com)



	c.jira.project_key

	The project key of the JIRA project that will be synced



	c.jira.github_issue_url_field_id

	The integer ID of a JIRA custom field in which jirahub will write the URL of the
linked GitHub issue.



	c.jira.jirahub_metadata_field_id

	The integer ID of a JIRA custom field in which jirahub will write metadata such as
the ids of linked comments.



	c.jira.closed_statuses

	List of JIRA statuses that will be considered closed.  All others will be treated as
open, for the purposes of syncing GitHub open/closed status and filtering issues.
These values are case-insensitive.



	c.jira.close_status

	JIRA status set on an issue when closed by the bot



	c.jira.reopen_status

	JIRA status set on an issue when re-opened by the bot



	c.jira.open_status

	JIRA status set on a newly created issue.  Set to None to use your project’s
default for new issues.



	c.jira.max_retries

	Maximum number of retries on request failure



	c.jira.notify_watchers

	Set to True if watchers should be notified when an issue is updated by the bot



	c.jira.sync_comments

	Set to True if JIRA comments should be created from GitHub comments



	c.jira.sync_status

	Set to True if the JIRA issue status should be set based on the GitHub open/closed status



	c.jira.sync_labels

	Set to True if the JIRA issue’s labels should match GitHub’s labels



	c.jira.sync_milestones

	Set to True if the JIRA issue’s fixVersions field should match GitHub’s milestone



	c.jira.create_tracking_comment

	Set to True to create a comment on JIRA issues that links back to GitHub.



	c.jira.redact_patterns

	List of re.Pattern whose matches will be redacted from issue titles,
issue bodies, and comment bodies copied over from GitHub



	c.jira.issue_title_formatter

	Callable that transforms the GitHub issue title before creating/updating it
in JIRA.  See Custom formatters for further detail.



	c.jira.issue_body_formatter

	Callable that transforms the GitHub issue body before creating/updating it
in JIRA.  See Custom formatters for further detail.



	c.jira.comment_body_formatter

	Callable that transforms the GitHub comment body before creating/updating it
in JIRA.  See Custom formatters for further detail.



	c.jira.issue_filter

	Callable that selects GitHub issues that will be created in JIRA.  See
Issue filters for further detail.



	c.jira.before_issue_create

	List of callables that transform the fields used to create a new JIRA issue.
This can (for example) be used to override jirahub’s behavior, or set values
for arbitrary custom fields.  See Issue hooks for further detail.









github

These are parameters particular to GitHub.  The repository parameter is required.







	Name

	Description





	c.github.repository

	GitHub repository name with organization, e.g., spacetelescope/jwst



	c.github.max_retries

	Maximum number of retries on request failure



	c.github.sync_comments

	Set to True if GitHub comments should be created from JIRA comments



	c.github.sync_status

	Set to True if the GitHub issue status should be set based on the JIRA open/closed status



	c.github.sync_labels

	Set to True if the GitHub issue’s labels should match JIRA’s labels



	c.github.sync_milestones

	Set to True if the GitHub issue’s fixVersions field should match JIRA’s milestone



	c.jira.create_tracking_comment

	Set to True to create a comment on GitHub issues that links back to JIRA.



	c.github.redact_patterns

	List of re.Pattern whose matches will be redacted from issue titles,
issue bodies, and comment bodies copied over from JIRA



	c.github.issue_title_formatter

	Callable that transforms the JIRA issue title before creating/updating it
in GitHub.  See Custom formatters for further detail.



	c.github.issue_body_formatter

	Callable that transforms the JIRA issue body before creating/updating it
in GitHub.  See Custom formatters for further detail.



	c.github.comment_body_formatter

	Callable that transforms the JIRA comment body before creating/updating it
in GitHub.  See Custom formatters for further detail.



	c.github.issue_filter

	Callable that selects JIRA issues that will be created in GitHub.  See
Issue filters for further detail.



	c.github.before_issue_create

	List of callables that transform the fields used to create a new GitHub issue.
This can (for example) be used to override jirahub’s behavior, or set values
for fields (such as assignee) that aren’t otherwise managed by jirahub.
See Issue hooks for further detail.









general

These are parameters shared by GitHub and JIRA.







	Name

	Description





	c.before_issue_update

	List of callables that transform the fields used to update an issue.
This can (for example) be used to override jirahub’s behavior, or set values
for arbitrary custom fields.  See Issue hooks for further detail.









Multiple configuration files

To facilitate re-use of common parameters, jirahub commands will accept multiple
configuration file paths.








Command-line interface

Jirahub is controlled with the jirahub command.  There are three subcommands: generate-config,
check-permissions, and sync.


generate-config

The generate-config command will print a template jirahub configuration file to stdout:

$ jirahub generate-config > my-jirahub-config.py








check-permissions

Once you’re satisfied with your configuration file, you can submit it to the check-permissions
command for verification.  Jirahub will attempt to connect to your JIRA server and GitHub
repository and report any failures.  It will also list any missing permissions from JIRA or GitHub
that are required for the features selected in the configuration file.  A successful check looks
like this:

$ jirahub check-permissions my-jirahub-config.py
JIRA and GitHub permissions are sufficient





And an unsuccessful check:

$ jirahub check-permissions my-jirahub-config.py
JIRA and/or GitHub permissions must be corrected:
sync_comments is enabled, but JIRA user has not been granted the DELETE_OWN_COMMENTS permission.
sync_status is enabled, but JIRA user has not been granted the CLOSE_ISSUES permission.
GitHub rejected credentials.  Check JIRAHUB_GITHUB_TOKEN and try again.








sync

The sync command does the work of syncing issues and comments.  At minimum, you must
specify a configuration file.  Additional options include:


	–min-updated-at: Restrict jirahub’s activity to issues updated after this timestamp.  The timestamp
format is ISO-8601 in UTC with no timezone suffix (e.g., 1983-11-20T11:00:00).


	–state-path: Path to a JSON file containing the same timestamp described above, as well as
a list of issues that failed.  The file will be updated after each run.


	–dry-run: Query issues and report changes to the (verbose) log, but do not change any data.


	–verbose: Enable verbose logging





Jirahub sync as a cron job

Users will likely want to run jirahub sync in a cron job, so that it can regularly poll JIRA/GitHub
for changes.  We recommend use of the lockrun [http://www.unixwiz.net/tools/lockrun.html] tool to
avoid overlap between jirahub processes.  Your cron line might look something like this:

*/5 * * * * lockrun --lockfile=/path/to/jirahub.lockrun -- jirahub sync /path/to/my-jirahub-config.py --state-path /path/to/jirahub-state.json >> /path/to/jirahub.log 2>&1












Custom formatters

The issue_title_formatter, issue_body_formatter, and comment_body_formatter parameters allow you to customize
how the issue and comment text fields are written to the linked issue.  The issue formatters are callables that receive
two arguments, the original jirahub.entities.Issue that is being synced, and the title/body string.  The title/body
has already been modified by jirahub; it has been redacted, if that feature is enabled, and the formatting has been
transformed to suit the target service.  The following formatter adds a “JIRAHUB: ” prefix to JIRA issue titles:

def custom_formatter(issue, title):
  return "JIRAHUB: " + title

c.jira.issue_title_formatter = custom_formatter





The original issue title/body (without jirahub’s modifications) is available from the issue object:

def custom_formatter(issue, body):
  return "This is the original body: " + issue.body

c.jira.issue_body_formatter = custom_formatter





If you need access to a custom field that isn’t recognized by jirahub, that is available via the raw_issue,
which contains the jira.resources.Issue or github.Issue that was used to construct the jirahub Issue.

def custom_formatter(issue, body):
  return "This is some custom field value: " + issue.raw_issue.body

c.jira.issue_body_formatter = custom_formatter





The comment_body_formatter is similar, except that it receives three arguments, the original jirahub.entities.Issue,
the jirahub.entities.Comment, and the comment body.

def custom_formatter(issue, comment, body):
  return "Check out this great comment from GitHub: " + body

c.jira.comment_body_formatter = custom_formatter





The unmodified comment body is available from comment.body, and the JIRA/GitHub comment object
from comment.raw_comment.




Issue filters

The issue_filter parameter allows you to select issues that will be created in the target
service.  The filter is a callable that receives a single argument, the original
jirahub.entities.Issue that is a candidate for sync, and returns True to create it, or False
to ignore it.  For example, this filter only syncs issues with a certain label:

def issue_filter(issue):
  return "sync-me" in issue.labels

c.jira.issue_filter = issue_filter





This feature can be used to sync issues based on “commands” issued by commenters:

ADMINISTRATOR_USERNAMES = {
  "linda",
  "frank"
}

def issue_filter(issue):
  return any(c for c in issue.comments if c.user.username in ADMINISTRATOR_USERNAMES and "SYNC ME PLEASE" in c.body)

c.jira.issue_filter = issue_filter








Issue hooks

The before_issue_create and before_issue_update hooks allow you to transform the fields sent
to JIRA/GitHub when an issue is created.  They can override jirahub’s behavior, or set custom fields
that aren’t otherwise managed by jirahub.

The create hooks are callables that receive 2 required arguments: the original jirahub.entities.Issue,
and a dict of fields that will be used to create the issue.  The 3rd optional argument, if present,
will receive the the jirahub.IssueSync instance.  Each callable must return a dict containing
the transformed fields.

The update hooks are callables that receive 4 required arguments: the updated jirahub.entities.Issue,
a dict of fields that will be used to modify that issue, the corresponding linked jirahub.entities.Issue,
and another dict of fields.  The 5th optional argument, if present, will receive the jirahub.IssueSync
instance.  Each callable must return two dict instances containing the transformed fields.

For example, this create hook sets a custom JIRA field:

def hook(issue, fields):
  fields["custom_jira_field"] = "some custom value"
  return fields

c.jira.before_issue_create.append(hook)








Manually linking issues

It is possible to link existing GitHub and JIRA issues by hand by setting the GitHub issue URL field
in JIRA.  jirahub will begin syncing the two issues on next run.  Take care that you don’t link two
JIRA issues to the same GitHub issue, that way lies peril (undefined behavior).







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to jirahub’s documentation!
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





