
jirahub
Release 0.2.3.dev10+gf125162

STScI

Feb 24, 2021

CONTENTS:

1 Download and install 3

2 JIRA configuration 5

3 jirahub configuration 7
3.1 Environment variables . 7
3.2 Configuration file . 7

4 Command-line interface 11
4.1 generate-config . 11
4.2 check-permissions . 11
4.3 sync . 12

5 Custom formatters 13

6 Issue filters 15

7 Issue hooks 17

8 Manually linking issues 19

i

ii

jirahub, Release 0.2.3.dev10+gf125162

Jirahub provides a configurable tool for synchronization of issues between a GitHub repository and a JIRA project.
With it, you can use GitHub for coding and ticket tracking while using JIRA for ticket tracking and project manage-
ment.

CONTENTS: 1

jirahub, Release 0.2.3.dev10+gf125162

2 CONTENTS:

CHAPTER

ONE

DOWNLOAD AND INSTALL

To download and install:

$ pip install jirahub

The package’s sole requirements are PyGithub and JIRA. Both of these dependencies are installable via pip.

3

https://github.com/PyGithub/PyGithub
https://github.com/pycontribs/jira

jirahub, Release 0.2.3.dev10+gf125162

4 Chapter 1. Download and install

CHAPTER

TWO

JIRA CONFIGURATION

jirahub stores state on the JIRA issue in two custom fields, which you (or your JIRA administrator) will need to create.
The first field stores the URL of a linked GitHub issue, and should be type “URL Field”. The second stores a JSON
object containing general jirahub metadata, and should be type “Text field (multi-line)”.

5

jirahub, Release 0.2.3.dev10+gf125162

6 Chapter 2. JIRA configuration

CHAPTER

THREE

JIRAHUB CONFIGURATION

Jirahub configuration is divided between environment variables (JIRA and GitHub credentials) and one or more .py
files (all other parameters).

3.1 Environment variables

Your JIRA and GitHub credentials are provided to jirahub via environment variables:

Variable name Description
JIRAHUB_JIRA_USERNAME JIRA username of your jirahub bot
JIRAHUB_JIRA_PASSWORD JIRA password of your jirahub bot
JIRAHUB_GITHUB_TOKEN GitHub API token of your jirahub bot

3.2 Configuration file

The remaining parameters are specified in a Python configuration file. There are few required parameters, but jirahub
takes no actions by default, so users must explicitly enable features that they wish to use. The generate-config com-
mand can be used to create an initial configuration file. The file is executed with the c variable bound to an instance
of jirahub.config.JirahubConfig, which has two attributes, jira and github.

7

https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line

jirahub, Release 0.2.3.dev10+gf125162

3.2.1 jira

These are parameters particular to JIRA. The server and project_key attributes are required.

Name Description
c.jira.server The URL of your JIRA server (e.g., https://my-jira.example.com)
c.jira.project_key The project key of the JIRA project that will be synced
c.jira.github_issue_url_field_id The integer ID of a JIRA custom field in which jirahub will write the URL of

the linked GitHub issue.
c.jira.jirahub_metadata_field_id The integer ID of a JIRA custom field in which jirahub will write metadata such

as the ids of linked comments.
c.jira.closed_statuses List of JIRA statuses that will be considered closed. All others will be treated

as open, for the purposes of syncing GitHub open/closed status and filtering
issues. These values are case-insensitive.

c.jira.close_status JIRA status set on an issue when closed by the bot
c.jira.reopen_status JIRA status set on an issue when re-opened by the bot
c.jira.open_status JIRA status set on a newly created issue. Set to None to use your project’s

default for new issues.
c.jira.max_retries Maximum number of retries on request failure
c.jira.notify_watchers Set to True if watchers should be notified when an issue is updated by the bot
c.jira.sync_comments Set to True if JIRA comments should be created from GitHub comments
c.jira.sync_status Set to True if the JIRA issue status should be set based on the GitHub

open/closed status
c.jira.sync_labels Set to True if the JIRA issue’s labels should match GitHub’s labels
c.jira.sync_milestones Set to True if the JIRA issue’s fixVersions field should match GitHub’s mile-

stone
c.jira.create_tracking_comment Set to True to create a comment on JIRA issues that links back to GitHub.
c.jira.redact_patterns List of re.Pattern whose matches will be redacted from issue titles, issue

bodies, and comment bodies copied over from GitHub
c.jira.issue_title_formatter Callable that transforms the GitHub issue title before creating/updating it in

JIRA. See Custom formatters for further detail.
c.jira.issue_body_formatter Callable that transforms the GitHub issue body before creating/updating it in

JIRA. See Custom formatters for further detail.
c.jira.comment_body_formatter Callable that transforms the GitHub comment body before creating/updating it

in JIRA. See Custom formatters for further detail.
c.jira.issue_filter Callable that selects GitHub issues that will be created in JIRA. See Issue filters

for further detail.
c.jira.before_issue_create List of callables that transform the fields used to create a new JIRA issue. This

can (for example) be used to override jirahub’s behavior, or set values for arbi-
trary custom fields. See Issue hooks for further detail.

8 Chapter 3. jirahub configuration

https://my-jira.example.com

jirahub, Release 0.2.3.dev10+gf125162

3.2.2 github

These are parameters particular to GitHub. The repository parameter is required.

Name Description
c.github.repository GitHub repository name with organization, e.g., spacetelescope/jwst
c.github.max_retries Maximum number of retries on request failure
c.github.sync_comments Set to True if GitHub comments should be created from JIRA comments
c.github.sync_status Set to True if the GitHub issue status should be set based on the JIRA

open/closed status
c.github.sync_labels Set to True if the GitHub issue’s labels should match JIRA’s labels
c.github.sync_milestones Set to True if the GitHub issue’s fixVersions field should match JIRA’s mile-

stone
c.jira.create_tracking_comment Set to True to create a comment on GitHub issues that links back to JIRA.
c.github.redact_patterns List of re.Pattern whose matches will be redacted from issue titles, issue

bodies, and comment bodies copied over from JIRA
c.github.issue_title_formatter Callable that transforms the JIRA issue title before creating/updating it in

GitHub. See Custom formatters for further detail.
c.github.issue_body_formatter Callable that transforms the JIRA issue body before creating/updating it in

GitHub. See Custom formatters for further detail.
c.github.comment_body_formatter Callable that transforms the JIRA comment body before creating/updating it in

GitHub. See Custom formatters for further detail.
c.github.issue_filter Callable that selects JIRA issues that will be created in GitHub. See Issue filters

for further detail.
c.github.before_issue_create List of callables that transform the fields used to create a new GitHub issue.

This can (for example) be used to override jirahub’s behavior, or set values for
fields (such as assignee) that aren’t otherwise managed by jirahub. See Issue
hooks for further detail.

3.2.3 general

These are parameters shared by GitHub and JIRA.

Name Description
c.before_issue_update List of callables that transform the fields used to update an issue. This can

(for example) be used to override jirahub’s behavior, or set values for arbitrary
custom fields. See Issue hooks for further detail.

3.2.4 Multiple configuration files

To facilitate re-use of common parameters, jirahub commands will accept multiple configuration file paths.

3.2. Configuration file 9

jirahub, Release 0.2.3.dev10+gf125162

10 Chapter 3. jirahub configuration

CHAPTER

FOUR

COMMAND-LINE INTERFACE

Jirahub is controlled with the jirahub command. There are three subcommands: generate-config,
check-permissions, and sync.

4.1 generate-config

The generate-config command will print a template jirahub configuration file to stdout:

$ jirahub generate-config > my-jirahub-config.py

4.2 check-permissions

Once you’re satisfied with your configuration file, you can submit it to the check-permissions command for
verification. Jirahub will attempt to connect to your JIRA server and GitHub repository and report any failures. It will
also list any missing permissions from JIRA or GitHub that are required for the features selected in the configuration
file. A successful check looks like this:

$ jirahub check-permissions my-jirahub-config.py
JIRA and GitHub permissions are sufficient

And an unsuccessful check:

$ jirahub check-permissions my-jirahub-config.py
JIRA and/or GitHub permissions must be corrected:
sync_comments is enabled, but JIRA user has not been granted the DELETE_OWN_COMMENTS
→˓permission.
sync_status is enabled, but JIRA user has not been granted the CLOSE_ISSUES
→˓permission.
GitHub rejected credentials. Check JIRAHUB_GITHUB_TOKEN and try again.

11

jirahub, Release 0.2.3.dev10+gf125162

4.3 sync

The sync command does the work of syncing issues and comments. At minimum, you must specify a configuration
file. Additional options include:

• –min-updated-at: Restrict jirahub’s activity to issues updated after this timestamp. The timestamp format is
ISO-8601 in UTC with no timezone suffix (e.g., 1983-11-20T11:00:00).

• –state-path: Path to a JSON file containing the same timestamp described above, as well as a list of issues that
failed. The file will be updated after each run.

• –dry-run: Query issues and report changes to the (verbose) log, but do not change any data.

• –verbose: Enable verbose logging

4.3.1 Jirahub sync as a cron job

Users will likely want to run jirahub sync in a cron job, so that it can regularly poll JIRA/GitHub for changes. We
recommend use of the lockrun tool to avoid overlap between jirahub processes. Your cron line might look something
like this:

*/5 * * * * lockrun --lockfile=/path/to/jirahub.lockrun -- jirahub sync /path/to/my-
→˓jirahub-config.py --state-path /path/to/jirahub-state.json >> /path/to/jirahub.log
→˓2>&1

12 Chapter 4. Command-line interface

http://www.unixwiz.net/tools/lockrun.html

CHAPTER

FIVE

CUSTOM FORMATTERS

The issue_title_formatter, issue_body_formatter, and comment_body_formatter parameters
allow you to customize how the issue and comment text fields are written to the linked issue. The issue formatters
are callables that receive two arguments, the original jirahub.entities.Issue that is being synced, and the
title/body string. The title/body has already been modified by jirahub; it has been redacted, if that feature is enabled,
and the formatting has been transformed to suit the target service. The following formatter adds a “JIRAHUB: ” prefix
to JIRA issue titles:

def custom_formatter(issue, title):
return "JIRAHUB: " + title

c.jira.issue_title_formatter = custom_formatter

The original issue title/body (without jirahub’s modifications) is available from the issue object:

def custom_formatter(issue, body):
return "This is the original body: " + issue.body

c.jira.issue_body_formatter = custom_formatter

If you need access to a custom field that isn’t recognized by jirahub, that is available via the raw_issue, which
contains the jira.resources.Issue or github.Issue that was used to construct the jirahub Issue.

def custom_formatter(issue, body):
return "This is some custom field value: " + issue.raw_issue.body

c.jira.issue_body_formatter = custom_formatter

The comment_body_formatter is similar, except that it receives three arguments, the original jirahub.
entities.Issue, the jirahub.entities.Comment, and the comment body.

def custom_formatter(issue, comment, body):
return "Check out this great comment from GitHub: " + body

c.jira.comment_body_formatter = custom_formatter

The unmodified comment body is available from comment.body, and the JIRA/GitHub comment object from
comment.raw_comment.

13

jirahub, Release 0.2.3.dev10+gf125162

14 Chapter 5. Custom formatters

CHAPTER

SIX

ISSUE FILTERS

The issue_filter parameter allows you to select issues that will be created in the target service. The filter is a
callable that receives a single argument, the original jirahub.entities.Issue that is a candidate for sync, and
returns True to create it, or False to ignore it. For example, this filter only syncs issues with a certain label:

def issue_filter(issue):
return "sync-me" in issue.labels

c.jira.issue_filter = issue_filter

This feature can be used to sync issues based on “commands” issued by commenters:

ADMINISTRATOR_USERNAMES = {
"linda",
"frank"

}

def issue_filter(issue):
return any(c for c in issue.comments if c.user.username in ADMINISTRATOR_USERNAMES

→˓and "SYNC ME PLEASE" in c.body)

c.jira.issue_filter = issue_filter

15

jirahub, Release 0.2.3.dev10+gf125162

16 Chapter 6. Issue filters

CHAPTER

SEVEN

ISSUE HOOKS

The before_issue_create and before_issue_update hooks allow you to transform the fields sent to
JIRA/GitHub when an issue is created. They can override jirahub’s behavior, or set custom fields that aren’t otherwise
managed by jirahub.

The create hooks are callables that receive 2 required arguments: the original jirahub.entities.Issue, and
a dict of fields that will be used to create the issue. The 3rd optional argument, if present, will receive the the
jirahub.IssueSync instance. Each callable must return a dict containing the transformed fields.

The update hooks are callables that receive 4 required arguments: the updated jirahub.entities.Issue, a
dict of fields that will be used to modify that issue, the corresponding linked jirahub.entities.Issue, and
another dict of fields. The 5th optional argument, if present, will receive the jirahub.IssueSync instance.
Each callable must return two dict instances containing the transformed fields.

For example, this create hook sets a custom JIRA field:

def hook(issue, fields):
fields["custom_jira_field"] = "some custom value"
return fields

c.jira.before_issue_create.append(hook)

17

jirahub, Release 0.2.3.dev10+gf125162

18 Chapter 7. Issue hooks

CHAPTER

EIGHT

MANUALLY LINKING ISSUES

It is possible to link existing GitHub and JIRA issues by hand by setting the GitHub issue URL field in JIRA. jirahub
will begin syncing the two issues on next run. Take care that you don’t link two JIRA issues to the same GitHub issue,
that way lies peril (undefined behavior).

19

	Download and install
	JIRA configuration
	jirahub configuration
	Environment variables
	Configuration file

	Command-line interface
	generate-config
	check-permissions
	sync

	Custom formatters
	Issue filters
	Issue hooks
	Manually linking issues

